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ABSTRACT

This report discusses the use of computer graphics to simulate gear tooth

manufacturing procedures. An analytical basis for the simulation is established

for spur gears. The simulation itself, however, is developed not only for spur

gears, but for straight bevel gears as well.

The applications of the developed procedure extend from the development

of finite element models of heretofore intractable geometrical forms, to

exploring the fabrication of nonstandard tooth forms.
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1. INTRODUCTION

This report discusses the geometry of gear tooth manufacturing procedures.

It presents results of research supported by the National Aeronautics and Space

Administration, Lewis Research Center under Grant NSF 3188 to the University of

Cincinnati. It is based upon a portion of the first author's doctoral

dissertation [1].

The gear tooth surface geometry is viewed as the envelope of a cutting tool

as it sweeps through a gear blank. The analysis is based upon earlier research

also supported by the Lewis Research Center and reported in [2,3].

Recently there have been dramatic advances in procedures for computer-

aided design of mechanical systems. In particular, there have been significant

advances in finite element methods and in associated computer graphic procedures.

Indeed, in the past decade the finite element method and computer graphic

analyses have become standard procedures in mechanical design.

For power transmission and gear design, however, the geometry has often

precluded accurate applications of the finite element method. That is, the gear

tooth profile is difficult to define -- especially for helical and bevel gears.

The contact path of mating gears is even more difficult to obtain.

In this report we present a computer graphics technique for developing gear

tooth geometry. It is based upon a geometric modeling of the gear fabrication

procedure. That is, the gear tooth surface is viewed as the "envelope" of a gear
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cutter passing through the gear blank. In the report we develop analytical

procedures for determining the envelopes. These procedures in turn are used to

validate computer graphic (numerical) methods for obtaining the envelopes.

The balance of the report is divided into five parts with the first part

providing a brief review of spur and bevel gear generating processes. The next

two parts discuss the envelopes of spur gear cutters. The subsequent part

discusses a computer graphic technique for simulating the cutting process. The

final part contains a brief discussion and concluding remarks.

2. REVIEW OF SPUR AND BEVEL GEARS AND THEIR MANUFACTURE

In the following paragraphs we review the nomenclature of spur and bevel

gears. Their cutting and fabrication methods are also discussed.

2.1 External Spur Gears

The involute spur gear is the most predominant tooth profile used in power

transmission devices. A spur gear and its rack are depicted in Figure 2.1.1.
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Figure 2.1.1 Spur Gear Nomenclature

The "involute" spur gear is so-named since the tooth profile has the shape of

an involute curve. The cycloid is the only other curve affiliated with spur gear

teeth. However, the cycloid tooth applications are limited to clocks and

watches.

The involute profile has the advantage of easy manufacturability, and the

kinematic feature that the velocity ratio of mating gears does not change as the

center distance varies. Figure 2.2 depicts mating spur gears.
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Figure 2.1.2 Mating Spur Gears

2.2 Straight Bevel Gears

Bevel gears are used in connecting shafts with intersecting axes. The

pitch surface is conical. Rolling without slippage takes place between the pitch

cones of the two mating bevel gears. The teeth are tapered in both thickness

and height. The tooth profile in a section normal to the tooth, closely

corresponds to that of a spur gear tooth with a pitch radius equal to the back

cone distance, and a diametrical pitch equal to that of the bevel gear. Such

a spur gear is called an "equivalent spur gear".

Bevel gear terminology and nomenclature are given in Figure 2.2.1.
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The equivalent spur gear nomenclature is presented in Figure 2.2.2.
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Figure 2.2.2 Equivalent Spur Gear Nomenclature

2.2.1 Milling

Gear milling produces spur gear teeth and straight bevel gear teeth using

a form cutter. One tooth space is milled at a time. The gear blank is then

indexed to the next cutting position. A disadvantage of this method is

inaccurate tooth spacing.

Gear milling is a non-generating process.

7



Figures 2.2.1.1a and 2.2.1.1b show the milling cut of a spur and straight

bevel gear tooth.

(a) (b)

Figure 2.2.1.1 Milling of Spur and Straight Bevel Gear Teeth

2.2.2 Hobbinq

Hobbing is a generating process of cutting spur gears. The gear teeth are

gradually formed in a series of cuts. The generation of the gear tooth is a

continuous indexing process in which both the cutter and the gear blank rotate

in a constant ratio while the hob is fed into the gear blank. The most common

shape of the hob has straight sides, thus producing involute spur gear teeth.

Figures 2.2.2.1 depict the generation of a spur gear with a hob.



Hob feed

Pitch line of
hob tooth

Gear blnk

Figure 2.2.2.1 Spur Gear Hobbing

The constant indexing makes hobbing rapid and accurate. It is also

economical since one hob will cut a number of teeth of a given pitch and pressure

angl e.

2.2.3 Shaping

Gear shaping is also d generating process. Here the cutter is a gear

itself. It generates tne proper tooth curve to mesh with itself. The cutter

is rotated in a constant ratio with the gear blank. Using a reciprocating

motion, materiai is then removed from the gear blank. A diagram depicting this

proress is shown in Figure 2.2.3.1, for spur gear teeth.
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'igure 2.2.3.1 Shaping of Spur Gear

3. DIFFERENTIAL GEOMETRY - ENVELOPES

3.1 Theoretical Considerations

Consider a family of surfaces defined by the equation

f(x,y,z,t) = 0 (3.1.1)

where t is the parameter. As t changes, a new surface member of the family is

defined. Consider a typical surface, S, which intersects with a neighbor

surface, S', in a curve, C. If S and S' correspond to the values t and t+At,
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then the intersection C is described by the two equations

• (x,y,z,t) = 0 and f(x,y,z,t+At) = 0 (3.1.2)

The surface

f(x,y,z,tAt) - f(x,y,z,t) = 0 (3.1.3)

also passes through the curve C. Consequently, the curve C is described by the

equations

f(x,y,z,t) = 0 and r(x,y,z,t) - f(x,t,z,t+At) = 0 (3.1.4)

In the imit, as At-0 and S approaches S', the curve C approaches a curve

C'. C' is defined by the equations:

f(x z t) =0 and a[f(xy,z,t)f = 0 (3.1.5)at

As t varies, the curve C' also varies, generating a surface called the envelope

of the family [17]. The envelope is a surface tangent to each surface S of the

family at all points of the curve C' on S. The elimination of t, the parameter
af

between f and a- , produces an equation G(x,y,z) = 0, which precisely describes

the envelope of the family.

As an example. consider the family of planes equidistant from a fixed

point. It ] readily seen that the envelope of this family is a spherical
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surface with a radius equal to the distance of the plane from the fixed point.

The family is a two-parameter family, since two angles are needed to determine

the orientation of the plane relative to the point.

It is readily seen that deriving an equation that describes the envelope

analytically is a complex process. In the folluwing section, the development

of an envelope for a one parameter family of curves is presented. Several

examples are presented to demonstrate the use of this theory, the most advanced

being the determination of the envelope of an involute profile cutter.

3.2 Envelope of a One Parameter Family of Curves

The best way to illustrate the application of the concepts presented in

the previous section is to consider a simple case: a one parameter family of

lines equidistant from a fixed point in a plane.

In Figure 3.2.1 a family of lines L, each a distance r from point 0, are

shown. The position of each line L can be defined by the single parameter @.
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Figure 3.2.1 Family of lines equidistant from a point

The equation of L is a straight line

y -y = m (x - X,) (3.2.1)

where m is its slope and (xo,,Y) are the coordinates of P, the point of

intersection of L and its normal line through 0. Since m is tano and y is

rsinf(= -rcosO) and xP is rcosO(= rsino), we can write 3.2.1 as

y + rcos9 = tanO + (x - rsino) (3.2.2)

or

ycosO = xsinO + r = 0 (3.2.3)

This is the par imetric representation of the family with 0 as its parameter:

f(x,y,O) = 0 (3.2.4)
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Differentiating with respect to @, we have:

- ysino + xcoso = 0 (3.2.5)

Solving for x and y simultaneously in equations (3.2.3) and (3.2.5), we obtain

the expressions

x = -rsino (3.2.6.a)

y = -rcoso (3.2.6.b)

Substituting equations (3.2.6) into (3.2.3) and eliminating 0 we have

y(- Y) + x(- X) + r = 0 (3.2.7)
r r

or

x2 + y2 = r2  (3.2.7)

which is, as expected, the equation of a circle. This expression represents the

equation of the envelope of the lines L.

3.3 Envelope of a Straight Sided Rack Cutter on the Gear Blank

S. Chang, R. L. Huston, and J. J. Coy [18] have developed an analytical

expression for the involute tooth profile of a spur gear, generated by using a

straight sided rack cutter as described in section 2.3.2. The results of this

analysis are included in this section as an example of the theory discussed in
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section 3.1. As an aid to visualizing this geometry, consider a perfectly

plastic wheel rolling over a straight sided step. The impression of the step

on the plastic wheel is the envelope of the family of line segments representing

the side of the step. The only difference from the previous example is the fact

that the wheel is rolling. Hence, it is advantageous to describe the geometry

relative to a coordinate system fixed on the wheel (Figure 3.3.1).

W A

YEY

0 L

0 X

Figure 3.3.1 Wheel and step

The equations of the line and its derivative with respect to the parameter are

found to be:

y(cosO - tano sinG) x(sinO + tanO cos8)

+ r + (x, - rO) tanO = 0 (3.3.1)

and

y(sin6 + tanO cos6) + x(cos6 - tanO sin6) + rtanO = 0 (3.3.2)

Solving these for x,y we obtain the parametric representation of the envelope

of L, relative to the wheel W. The envelope equation represented by these two
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parametric equations is indeed the involute of a circle, since the locus of the

center of the curvature of E is a circle having the equation

x,2 + y,2 = r2sin 2o (3.3.3)

This circle is the base circle of the involute. The pressure angle 0 is the

complement of the angle 0 of the step's inclination.

4. ENVELOPE OF INVOLUTE PROFILE CUTTER

4.1 Introduction

As a final example of determining an analytical representation of the

envelope of a family of curves, consider the case of spur gear tooth generation

by shaping. This process can be modeled by two rolling disks, one having

penetrating involute profile teeth and the other a gear blank to be cut. The

task is to determine an expression that describes the "footprint" of the cutter

onto the gear blank, and then to show that the footprint is of involute shape.

Note that because of the constant profile shape along the width of the disks,

the problem is reduced to two dimensions.
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Figure 4.1 Spur Gear Shaping.

4.2 Involute Analysis

The parametric equations of an involute curve in rectangular coordinates

may be described as follows:

Consider an arbitrary point P on the involute curve located by a position

vector p as in Figure 4.2.1. Then p may be expressed as:

p = rn r + ron 8  (4.2.1)
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Y

Figure 4.2.1 Involute Curve

where nr and n, are unit vectors as shown, r is the generating base circle radius

and 0 is the involute angle. The coordinate axes are X and Y and n and n arex y

unit vectors parallel to these axes. The unit vectors are then related to one

another by the expressions:

nr cosOnx + sin~ny (4.2.2.a)

n -a sin~nx + cos~ny (4.2.2.b)

where 8 is the inclination angle of n r as shown.

Equation 4.2.1 may then be written as

p = (rcosO - rosin9)n x + (rsin8 + rocosO)ny (4.2.3)
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However

+ A (4.2.4.a)

Hence,

coso = cos(I ) = sine (4.2.4.b)

and

sine = sin(? - @) = cosO (4.2.4.c)

Therefore from Equation (4.2.3) p becomes

p = (rsinO - r~cosO)n x + (rcoso + rosinO)ny (4.2.5)

The parametric equations of the involute line in rectangular coordinates are then

x = rsino - r~coso (4.2.6)

and

y = rcoso + resino (4.2.7)

or

y = f(x)

with slope

dy
dy = = cotO (4.2.7.a)

dx dx
d1
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4.3 Rolling Analysis

Consider two rolling wheels w, and w2 of unequal radii as shown in Figure

4.3.1
A

A

AA I

\\ I

I

/,

02

Figure 4.3.1 Rolling of Gear Blank over an Involute Profile Cutter

Let wheel w, be the cutter, and with a tooth of involute profile attached to it.

Let wheel w2 be the gear blank which rolls on the cutter and eventually over the

involute curve. Consider a point P on the involute with coordinates x,y. The

coordinate system (X-Y) is.fixed on wheel w2. Consider wheel w2 at position 0*

making an angle 82 with the Y axis. Angle 6, is measured between the Y axis and

the line 020 making an angle 82 with the Y axis. Angle 8, is measured between
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the Y axis and the line 020* of the centers. Nx Ny are unit vectors along the

X-Y axes and N,,N are unit vectors along the X-Y axes. The position vector p

P is then

p = xN + yNy = 020* + p* (4.3.1)

where p* is the position vector of p relative to X,Y at the O* position.

Using the geometry from Figure 4.3.1 we can write:

p = (r, + r2 )N + Nx + 5Ny

where N is a unit vector along the line of centers of the wheels as shown.

Expressing p in terms of the unit vectors N x,Ny in X-Y we have:

p = [(r, + r 2)sino 2 + Rcos013N i + [(r, + r 2)cos9 2 - Rsinat N (4.3.2)

Thus the coordinates of P with respect to the X-Y coordinate system may be

written as:

x = (r, + r 2)sinO2 + Rcosa + 5sina (4.3.4.a)

y = (r, + r2)cosO, - Rsina + Ycose (4.3.4.b)

solvirig for x,y we have:

R = xcosa - ysina + (r, + r2)sin(o - 02) (4.3.4.a)

y = xsina + ycosa - (r, + r 2)cos(a - 02) (4.3.4.b)
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To simplify these equations, suppose r, = r , then 02 = and
2

x = xcosa + sine + 2rsinz (4.3.6.a)2

= - isina + ycosa + 2rcosq (4.3.6.b)Y2

and

X = xcosa - ysina + 2rsinq (4.3.7.a)

= xsina + ycosa - 2rcosq (4.3.7.b)

4.4 Envelope Analysis

Suppose y=f(x) describes a curve (that is, an involute tooth profile) in

wheel w,. Then this curve will have in the coordinate system of wheel w2 a form

expressed as

y(i',5,) = f[x(i,9,a)] (4.4.1)

where y(i,q,a) and x(R,5,t) are given by equations (4.3.4) and (4.3.6). Equation

(4.4.1) can be rewritten in the form

F(iy,a) = 0 (4.4.2)

Then the envelope of the curves in w2 is given by the intersection of the surface

of Equation (4.4.2) and the surface defined by the equation:

a = 0 (4.4.3)
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4.5 Envelope of Involute

Suppose the involute curve of Equations (4.2.6) and (4.2.7) is written as

y = f(x) (4.5.1)

From Figure 4.3.1 it is observed that

, (r 2) 62 (4.5.2)r

and

(r 2 
r, r+r2

= , + 02 P +1)e2= r102 02 (4.5.2.a)

Hence

r,
r, + r 2 0 (4.5.3)

Using Equations (4.3.4) and the above expression, Equation (4.5.1) takes

the form:

(r, + r,)cos [a] r - Rsina + 5cosa =

f (r, + r2)sin r, a] + Rcos + 9sin (4.5.4)[(r, + r2 ) J +coa+yi}

23



Hence, by differentiating with respect to a, we have:

r,
- r,sin r, + r) a Rcosa - 9sina

df [rcos (r r2 ) a] - isina + Isinal (4.5.5)
.+

However, from Equations (4.3.4), (4.5.2), (4.5.3), and (4.2.7a) we have

Rcosa + 5sina = x - (r, + r2)sin[( r ) a) (4.5.6)£r, + r2

- Rsina + 5cosa = y - (r, + r2)cos[ r + r2 a) (4.5.7)

and

df = coto
dx

Hence, Equation (4.5.5) becomes:

- xsino + r2sin r, + r r sino = ycosO - r2cos [ r, r ) coso

or

xsino + ycosO = r 2cos (r, r ) (4.5.8)
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Observe though that from Equations (4.2.6) and (4.2.7) of the involute we have

xsino + ycosO = r 2sin2O - r 2ocososino + r 2cos2o + r 2osinocosO

or

xsino + ycoso = r2 (4.5.9)

Comparing Equations (4.5.8) and (4.5.9) we note that in order for the right sides

to be equal, we must have:

- +rj r 2 ) ] 1

or

r, + r, (4.5.10)

Next, examine the involute curve in w2 in terms of R and 9:

From Figure 6.3.1 we note tiat

a - 02  ( (4.5.11)

r, + r 2

From Equations (4.3.5) we have:

R = xcosa - ysina + (r, + r( r2 ) (4.5.12.a)

and
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9 = xsina + ycosa - (r, + r)cos r, + r2 ) ] (4. 5. 12. b)

Then from Equations (4.2.6) and (4.2.7) we can substitute x and y for functions

of 0. This leads to:

(r,
= r 2sinocoso - r 2,cos~cosa - r 2cos~sina - r2osinosina + (r,+r 2)sin (r, + r 2

and (r,
= r 2sinosina - r 2ocososina + r2cosocosa + r 2sinocose - (r 1+r 2)cos r, + r 2  a

or

= r 2sin(0 - at) - rOcos(0 - af) + (r, + r 2)sin r+ r 2 ] (4.5.13.a)

and

S= r 2cos(o - a) + r 2,sin(O - a) - (r, + r2)cos r + r )] (4.5.13.b)

Observe from Equation (4.5.10) that

S , r;+ r2 ) - (r. r2 )

and

S of - -(4 .5 .1 4 )

26



Hence, Equations (4.5.13) become:

R= r,sin (rrcos (

and

j=-r,cos (4 0~ r 20Sin

Using the substitution

r = B (4.5.15)

we obtain:

= rlsino - rfcoso (1.5.16.a)

and

= rcoso - r,OsinO (4.5.16.b)

Observe by comparison with Equations (4.2.6) and (4.2.7), that Equations

(6.5.16) describe an involute on wheel w2 going downwards. Thus the tootprint

of the involute profile of the cutter tooth on the gear blank is seen to be of

involute shape.
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5. COMPUTER SIMULATION OF MANUFACTURING PROCESSES

5.1 Introduction

Although the analytical development of the involute profile of a spur gear

tooth is relatively simple, the analogous development for bevel gears is much

more cumbersome. An alternative to the analytical development is to use computer

graphics technology. A feature of this technology is "solid modeling" which is

used for developing geometry for finite element analyses. The settings and

parameters of the gear manufacturing processes may be specified to simulate the

motion of a cutter and gear blank. Thus analytical expressions of the geometry

are not needed.

For an accurate analysis, the computer model cut gear tooth must be an

accurate model of the actual manufactured gear tooth. To obtain such a model

it is necessary to have exact specifications and dimensions of the cutting tool

and gear blank, the relative positions of the two gears and their motion relative

to each other.

This part of the report discusses computer simulation of gear manufacturing

procedures. It is shown that this method accurately defines the geometry of the

gear tooth surfaces. The method will be demonstrated through a series of

examples

The software used is the solid modeling family in the SDRC I-DEAS package,

called GEOMOD [13]. GEOMOD provides the user with a set of modular software

28



tools to aid in the generation of geometric design of a mechanical system. In

particular, object modeling is a module where the user can create 3-dimensional

geometric shapes and manipulate the geometry by deforming, orienting, joining,

and cutting objects with one another. Overall, the package offers a powerful

tool, for defining and evaluating the geometry of a structural component or

system.

5.2 Gear and Straight Sided Rack

Figure 5.2.1 Rack and Spur Gear Generating Process

The generating process of forming involute gear teeth is shown in Figure

5.2.1, where a gear blank and a rack cutter are shown. The cutting process

occurs as the cutter moves horizontally and the gear blank rolls upon it. Gear

29



The teeth formed are the "footprint" of the rack onto the gear blank [18].

Figure 5.2.2 illustrates the concept of the "footprint".

Figure 5.2.2 Footprint of a Step on the Wheel Rolling Over It

Applying this procedure with solid modeling we create two objects: the

gear blank (a cylinder of radius equal to the outside radius of the gear) and

the cutter. Figure 5.2.3 shows the straight sided rack cutter. Figure 5.2.4

shows the position of the cutter before and after the rolling motion. It also

shows the gear blank with the "footprint". Figure 5.2.5 shows two spur gear

teeth generated by the process.
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Figure 5.2.3 Solid Model of Straight Sided Rack Cutter
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Figure 5.2.4 Solid Model of Gear Blank and Rack Cutter
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involute curve to obtain an analytical description of the matching involute that

is:

x = r sino - r 0 cosO (5.2.1)

and

y = r coso + r 0 sino (5.2.2)

Figure 5.2.6 Coordinates of Points of an Involute Curve

Figure 5.2.7 shows a comparison of the two curves. It is seen that the two

curves are the same. (In the figure the curves are offset for the purpose of

comparison.)
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Figure 5.2.7 Generated and Calculated Involute Profiles

5.3 Involute Profile Cutter on a Wheel

The foregoing process may be generalized with the cutter tooth being an

involute on a circular disk, as in Figure 5.3.1. Figures 5.3.2 to 5.3.5 show

the resulting computer graphic simulation.
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Figure 5.3.1 Footprint of an Involute Cutter on a Gear Blank
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Figure 5.3.2 SolI i d Mo de]1 o f C t tt er 0 [
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Figure 5.3.3 Generated Gears (Equal Radii)
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Figure 5.3.4 Gener athd ', (,Unequal I cd ii)



5.3.5 Close-up View of Generated Teeth
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5.4 Straight Bevel Gears

Consider the extension of these concepts to the development of straight

bevel gears. The involute profile of a spur gear tooth is generated from a "base

circle". Extended in the axial dirertion, the set of base circles form a

cylinder -- the "base cylinder". In an analogous manner, the basic rack for a

spur gear becomes a "crown gear rack" for a bevel gear. For a bevel gear the

base surface is a cone. See Figure 5.4.1.

Figure 5.4.1 Bevel and Crown Gears

The pitch surface of the crown gear is planar. The teeth of the crown gear

are straight sided with an inclination corresponding to the pressure angle. When

generating methods are employed in manufacturing bevel gears, the relative motion

specified for the cutting tool and the gear blank is the same as would be

obtained if the bevel gear to be cut is rotating in mesh with the crown gear.

This concept provides the procedure for contputer solid modeling simulation of

the straight bevel gear tooth.
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The steps in this simulation are the same as those of the spur gear.

Figure 5.4.2 shows a bevel gear blank and a crown gear cutter. Figures 5.4.3

to 5.4.5 show a generated tooth on a pinion.

Figure 5.4.2 Solid Model of Pinion Blank and Crown Gear Cutter
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Figure 5.4.3 Cutter Before and After Cut and Pinion with Generated Tooth
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Figure 5.4.4 Close-up View of the Cut Tooth on the Pinion Blank

44



i~u,5.4 5 Pin ion withI (,erierildt T(tt h
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DISCUSSION

The foregoing concepts establish the principles of a computer simulation

of gear tooth manufacturing procedures. The analysis shows that gear tooth

surfaces may be viewed as envelopes of gear cutters sweeping through the gear

blank. The examples demonstrate the feasibility of computer based analysis and

design of the cutting process.

The analysis is developed for spur gears. As such, it is a planar

analysis. Even with the simplification of planar modeling, however, it is seen

that the analysis is cumbersome. Indeed, a strictly analytical development of

bevel gear surfaces -- particularly spiral bevel gear surfaces -- is virtually

intractable. The computer simulation, however, is not restricted to a planar

analysis. With the computer simulation, three-dimensional surfaces, such as

occur with spiral bevel gear teeth, are developed in the same manner as two-

dimensional spur gear tooth surfaces.

The value of the analysis is that it establishes the validity of the

computer simulation. Hence, the surfaces of standard tooth forms can be

developed. These surfaces in turn, can be used to develop finite element

modeling of the gear teeth.

The capabilities of the computer analysis extend beyond this to the

analysis of nun-standard tooth forms and their associated fabrication procedures.

That is, the procedure can be used to obtain a representative of non-standard
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tooth surfaces. The fabrication procedure to develop these surfaces is a by-

product of the simulation.

Finally, by extending the computer graphic analysis it is seen that it can

be applied with other machine surfaces, such as cams and bearings.

CONCLUSIONS

1. The analysis demonstrates the utility of computer graphics in simulating

gear design and manufacture. The use of these procedures eliminates the

need to rely upon unwieldy analytical representations of gear tooth

geometry. (Analytical representations have heretofore been intractable

except for the simplest of gear tooth surfaces.)

2. The computer graphics representation is ideally suited for developing

finite element models of gear teeth. (In the past, geometrical complexity

has precluded an easy development of such models.)

3. The developed procedure may be used for conceptual exploration of new

designs (that is, the cutter shape and movement) is an immediate byproduct

of the graphics process.
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